Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome scale transcriptome analysis of shoot organogenesis in Populus.

Identifieur interne : 003614 ( Main/Exploration ); précédent : 003613; suivant : 003615

Genome scale transcriptome analysis of shoot organogenesis in Populus.

Auteurs : Yanghuan Bao [États-Unis] ; Palitha Dharmawardhana ; Todd C. Mockler ; Steven H. Strauss

Source :

RBID : pubmed:19919717

Descripteurs français

English descriptors

Abstract

BACKGROUND

Our aim is to improve knowledge of gene regulatory circuits important to dedifferentiation, redifferentiation, and adventitious meristem organization during in vitro regeneration of plants. Regeneration of transgenic cells remains a major obstacle to research and commercial deployment of most taxa of transgenic plants, and woody species are particularly recalcitrant. The model woody species Populus, due to its genome sequence and amenability to in vitro manipulation, is an excellent species for study in this area. The genes recognized may help to guide the development of new tools for improving the efficiency of plant regeneration and transformation.

RESULTS

We analyzed gene expression during poplar in vitro dedifferentiation and shoot regeneration using an Affymetrix array representing over 56,000 poplar transcripts. We focused on callus induction and shoot formation, thus we sampled RNAs from tissues: prior to callus induction, 3 days and 15 days after callus induction, and 3 days and 8 days after the start of shoot induction. We used a female hybrid white poplar clone (INRA 717-1 B4, Populus tremula x P. alba) that is used widely as a model transgenic genotype. Approximately 15% of the monitored genes were significantly up-or down-regulated when controlling the false discovery rate (FDR) at 0.01; over 3,000 genes had a 5-fold or greater change in expression. We found a large initial change in expression after the beginning of hormone treatment (at the earliest stage of callus induction), and then a much smaller number of additional differentially expressed genes at subsequent regeneration stages. A total of 588 transcription factors that were distributed in 45 gene families were differentially regulated. Genes that showed strong differential expression included components of auxin and cytokinin signaling, selected cell division genes, and genes related to plastid development and photosynthesis. When compared with data on in vitro callogenesis in Arabidopsis, 25% (1,260) of up-regulated and 22% (748) of down-regulated genes were in common with the genes regulated in poplar during callus induction.

CONCLUSION

The major regulatory events during plant cell organogenesis occur at early stages of dedifferentiation. The regulatory circuits reflect the combinational effects of transcriptional control and hormone signaling, and associated changes in light environment imposed during dedifferentiation.


DOI: 10.1186/1471-2229-9-132
PubMed: 19919717
PubMed Central: PMC2784466


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome scale transcriptome analysis of shoot organogenesis in Populus.</title>
<author>
<name sortKey="Bao, Yanghuan" sort="Bao, Yanghuan" uniqKey="Bao Y" first="Yanghuan" last="Bao">Yanghuan Bao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, 97331-5752, USA. yangh.bao@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, 97331-5752</wicri:regionArea>
<wicri:noRegion>97331-5752</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19919717</idno>
<idno type="pmid">19919717</idno>
<idno type="doi">10.1186/1471-2229-9-132</idno>
<idno type="pmc">PMC2784466</idno>
<idno type="wicri:Area/Main/Corpus">003390</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003390</idno>
<idno type="wicri:Area/Main/Curation">003390</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003390</idno>
<idno type="wicri:Area/Main/Exploration">003390</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome scale transcriptome analysis of shoot organogenesis in Populus.</title>
<author>
<name sortKey="Bao, Yanghuan" sort="Bao, Yanghuan" uniqKey="Bao Y" first="Yanghuan" last="Bao">Yanghuan Bao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, 97331-5752, USA. yangh.bao@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, 97331-5752</wicri:regionArea>
<wicri:noRegion>97331-5752</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster Analysis (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (growth & development)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>RNA, Plant (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Populus</term>
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Our aim is to improve knowledge of gene regulatory circuits important to dedifferentiation, redifferentiation, and adventitious meristem organization during in vitro regeneration of plants. Regeneration of transgenic cells remains a major obstacle to research and commercial deployment of most taxa of transgenic plants, and woody species are particularly recalcitrant. The model woody species Populus, due to its genome sequence and amenability to in vitro manipulation, is an excellent species for study in this area. The genes recognized may help to guide the development of new tools for improving the efficiency of plant regeneration and transformation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We analyzed gene expression during poplar in vitro dedifferentiation and shoot regeneration using an Affymetrix array representing over 56,000 poplar transcripts. We focused on callus induction and shoot formation, thus we sampled RNAs from tissues: prior to callus induction, 3 days and 15 days after callus induction, and 3 days and 8 days after the start of shoot induction. We used a female hybrid white poplar clone (INRA 717-1 B4, Populus tremula x P. alba) that is used widely as a model transgenic genotype. Approximately 15% of the monitored genes were significantly up-or down-regulated when controlling the false discovery rate (FDR) at 0.01; over 3,000 genes had a 5-fold or greater change in expression. We found a large initial change in expression after the beginning of hormone treatment (at the earliest stage of callus induction), and then a much smaller number of additional differentially expressed genes at subsequent regeneration stages. A total of 588 transcription factors that were distributed in 45 gene families were differentially regulated. Genes that showed strong differential expression included components of auxin and cytokinin signaling, selected cell division genes, and genes related to plastid development and photosynthesis. When compared with data on in vitro callogenesis in Arabidopsis, 25% (1,260) of up-regulated and 22% (748) of down-regulated genes were in common with the genes regulated in poplar during callus induction.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The major regulatory events during plant cell organogenesis occur at early stages of dedifferentiation. The regulatory circuits reflect the combinational effects of transcriptional control and hormone signaling, and associated changes in light environment imposed during dedifferentiation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19919717</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Nov</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome scale transcriptome analysis of shoot organogenesis in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>132</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-9-132</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Our aim is to improve knowledge of gene regulatory circuits important to dedifferentiation, redifferentiation, and adventitious meristem organization during in vitro regeneration of plants. Regeneration of transgenic cells remains a major obstacle to research and commercial deployment of most taxa of transgenic plants, and woody species are particularly recalcitrant. The model woody species Populus, due to its genome sequence and amenability to in vitro manipulation, is an excellent species for study in this area. The genes recognized may help to guide the development of new tools for improving the efficiency of plant regeneration and transformation.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We analyzed gene expression during poplar in vitro dedifferentiation and shoot regeneration using an Affymetrix array representing over 56,000 poplar transcripts. We focused on callus induction and shoot formation, thus we sampled RNAs from tissues: prior to callus induction, 3 days and 15 days after callus induction, and 3 days and 8 days after the start of shoot induction. We used a female hybrid white poplar clone (INRA 717-1 B4, Populus tremula x P. alba) that is used widely as a model transgenic genotype. Approximately 15% of the monitored genes were significantly up-or down-regulated when controlling the false discovery rate (FDR) at 0.01; over 3,000 genes had a 5-fold or greater change in expression. We found a large initial change in expression after the beginning of hormone treatment (at the earliest stage of callus induction), and then a much smaller number of additional differentially expressed genes at subsequent regeneration stages. A total of 588 transcription factors that were distributed in 45 gene families were differentially regulated. Genes that showed strong differential expression included components of auxin and cytokinin signaling, selected cell division genes, and genes related to plastid development and photosynthesis. When compared with data on in vitro callogenesis in Arabidopsis, 25% (1,260) of up-regulated and 22% (748) of down-regulated genes were in common with the genes regulated in poplar during callus induction.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The major regulatory events during plant cell organogenesis occur at early stages of dedifferentiation. The regulatory circuits reflect the combinational effects of transcriptional control and hormone signaling, and associated changes in light environment imposed during dedifferentiation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>Yanghuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, 97331-5752, USA. yangh.bao@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dharmawardhana</LastName>
<ForeName>Palitha</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mockler</LastName>
<ForeName>Todd C</ForeName>
<Initials>TC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19919717</ArticleId>
<ArticleId IdType="pii">1471-2229-9-132</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-9-132</ArticleId>
<ArticleId IdType="pmc">PMC2784466</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Symp Soc Exp Biol. 1957;11:118-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13486467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Jul;25(7):660-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2006;344:143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Oct;9(5):448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Aug;61(6):917-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(3):511-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17953539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):446-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2006 Jun;24(6):267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16650909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):620-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Feb;63(3):337-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17072560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jul;52(4):893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13677475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Oct;8(5):518-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):3901-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Dec;90(6):681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12451023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15992406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 5;318(5847):68-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Jul;9(1):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15992545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Nov;7(11):847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2771-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Feb;8(1):26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653396</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Bao, Yanghuan" sort="Bao, Yanghuan" uniqKey="Bao Y" first="Yanghuan" last="Bao">Yanghuan Bao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003614 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003614 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19919717
   |texte=   Genome scale transcriptome analysis of shoot organogenesis in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19919717" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020